无套内谢少妇毛片a片小说,人人妻人爽a片二区三区,久久草在线视频,和闺蜜互换老公以后没钱怎么办呢

浙江大匯-承載膜
沃達重工 液壓機 華征新材料 天騏機械
當前位置: 首頁 » 復材學院 » 學術論文 » 正文

碳纖維纏繞氣瓶用環氧樹脂體系的固化工藝研究

放大字體  縮小字體 發布日期:2014-12-16  來源:復材應用技術網  瀏覽次數:182
核心提示:前國內外對環氧樹脂固化工藝研究較多,但針對LY564環氧樹脂體系在高壓氣瓶特殊應用環境中的研究卻較少。本文對該樹脂體系進行了不同升溫速率的DSC分析,用流變儀對該樹脂體系的等溫粘度和動態粘度進行了測試,并且用DMA對該樹脂體系的玻璃化轉變溫度進行測定,實驗結果表明了LY564環氧樹脂體系應用于碳纖維纏繞氣瓶的適用性,并確定了該樹脂體系的理論固化工藝。

1·引言
      碳纖維纏繞氣瓶由于其質量輕、強度高和良好的疲勞性能,已經在消防、醫療、新能源汽車等領域廣泛應用。考慮到氣瓶可能涉及高溫工作環境,部分標準已經進行了相關描述,例如美國交通運輸部的DOT—CFFC(2007)標準中明確要求氣瓶需要承受50一90℃的熱循環試驗,而且若樹脂體系的玻璃化轉變溫度低于102℃還需進行高溫蠕變試驗。考慮到以上因素,一般要求所選用的環氧樹脂具有較高的玻璃化轉變溫度( >102℃)。
      LY564樹脂體系是一種適合高壓復合氣瓶纏繞使用的樹脂。為了研究LY564樹脂的固化特性,針對該樹脂體系以不同升溫速率進行了動態DSC掃描,用流變儀測量等溫粘度和動態粘度測試,并對固化樹脂進行DMA測試。根據試驗結果,確定固化工藝,保證了固化效率。
      2 ·試驗部分
      2.1 主要原材料
           
      2.2 試驗方法
      樹脂、固化劑和促進劑按重量比混合,攪拌均勻,呈透明的粘稠液體。
      2.2.1 DSC試驗
      采用美國Rheometer scientific公司生產的DSC— SP型DSC掃描測試儀,不同升溫速率動態DSC測試。升溫速率5℃/min、:10℃/min、20℃/min,溫度范圍30—300℃,介質為流動N2。
      2.2.2 流變試驗
      取一定量配好的樹脂體系進行升溫流變測試,溫度范圍30—120℃。LY564樹脂體系在溫度未達到120℃時,粘度已急劇上升,因此試驗在120℃前終止。
      取一定量配好的LY564樹脂體系進行等溫流變測試,溫度為70℃、80℃ 、90℃ 。
      2.2.3 DMA試驗
      固化工藝:90℃/2h+125℃/4.5h,隨爐降溫至65℃ :
      試樣打磨至標準尺寸:10×5×2 mm;進行DMA測試,升溫速度:5℃/min,振動頻率:1 Hz,溫度范圍30~160℃。
      3·結果和討論
      3.1 LY564樹脂體系的DSC分析
      環氧樹脂的固化反應,通常隨固化溫度的增高速率加快、反應時間縮短。易長海等人[1]對BPEA一2/CYD一128環氧樹脂固化體系的固化反應以不同的升溫速率進行了DSC掃描,結果表明:DSC曲線的放熱峰溫度(起始溫度Ti,峰頂溫度Tp,終止溫度Tf)隨升溫速率的增加而升高,隨升溫速率的增大,反應時間t m(固化時間)減小,放熱峰形越來越尖銳,這符合以上的規律。樹脂的固化反應一般是在恒溫條件下進行的,而熱分析通常采用的是等速升溫法,對樹脂體系采用不同的升溫速度,DSC曲線的峰值溫度有明顯的差異,為了消除這種影響,需進一步應用外推法求升溫速率為0時的峰值溫度,從而確定最佳固化工藝范圍[2]。若以升溫速率對溫度圖,外推求出升溫速率為0時的溫度,則此值可作為最低固化溫度,即最佳固化溫度。即以起始固化溫度Ti緩慢升溫到峰頂溫度Tp恒溫固化,最后在終止溫度Tf左右恒溫一段時間使樹脂充分固化。為使環氧樹脂體系能很好交聯,需找出能使樹脂體系很好交聯的固化時間和固化溫度。
      圖1是LY564樹脂體系,不同升溫速率下的動態DSC曲線和固化峰溫度與升溫速率的關系曲線。由圖1可知,隨升溫速率增大,LY564樹脂體系的固化起始溫度Ti,固化峰值溫度Tp和固化終止溫度Tf升高,放熱峰形變得越來越尖銳。表1可知,隨升溫速率增大,兩種樹脂體系的固化反應熱降低,固化反應時間減小。以升溫速率對溫度作圖,外推求出升溫速率為0時的固化工藝溫度,根據這些值可得到最佳固化工藝。
            
           
       利用外推法可以得到:LY564樹脂體系放熱峰Ti=88.4℃、 Tp=126.7℃、Tf=163.6℃。即88.4℃固化開始;126.7℃ 固化反應放熱達到最大,163.6℃后反應近乎停止。理論上的固化工藝可以是:88.4℃恒溫一段時間,然后升溫到126.7℃ 恒溫固化,最后在163.6℃恒溫一段時間使樹脂后固化完全。
       3.2 LY564樹脂體系的流變試驗分析
      樹脂粘度反映復合材料制造過程中基體樹脂的流動特性,粘度既與溫度有關也與時間有關[3]。溫度越高,達到相同粘度所需要的時間就越短。固化初期,粘度隨溫度增加而降低。此時沒有樹脂固化引起的粘度增加,所以粘度可能下降2~3個數量級;固化溫度越高,溫度造成的粘度降低就越多。固化反應開始時,固化反應導致的粘度增加會被溫度升高造成的粘度降低抵消。隨樹脂繼續固化,交聯形成,固化反應引起的粘度增加起主導作用,粘度開始以較快速率增加,最后接近凝膠時,粘度增長速率接近無限大。
           
       圖2是LY564樹脂體系等溫條件下,粘度與時間的關系曲線。可以看到,樹脂體系在90~95℃之間粘度最低;試驗開始到90%時,粘度隨溫度升高而降低;95℃到試驗終止時,粘度隨溫度升高而增大。
            
      圖3是LY564樹脂體系粘度與溫度的關系曲線。可知,溫度對于粘度的影響,在拐點之后,粘度上升速度受溫度影響很大,通過試驗數據可以得到,在70℃、80℃ 、90℃下,粘度達到1 Pa·S的時間分別為3 000 s,1 540 s和790 S;90℃時1011 s的粘度已達到140 Pa·S,已經凝膠。
      從提高凝膠效率考慮,凝膠溫度在90~95℃比較好,而LY564樹脂體系在38.4℃已經開始固化,因此凝膠溫度應不大于該溫度。考慮到實際生產過程到升溫過程,我們將凝膠溫度定在90℃ ,凝膠時間根據產品表面達到凝膠狀態來確定。
      3.3 LY564樹脂體系的DMA分析
      固化時間和固化溫度不同,環氧基的消耗程度不同,樹脂的固化度也不同。為得到較高的固化度,首先要使樹脂凝膠,發生線型聚合,生成長鏈分子;然后進行高溫固化交聯,即體型聚合。倘若凝膠時間不夠,則需要較長時間后固化,才能使反應進行完全。
           
      圖4是LY564樹脂體系按照90℃/2h+125℃/4.5h的固化工藝固化后得到的試樣進行DMA測試結果。可以看出LY564樹胳體系的Tg為123.4℃,完全滿足使用要求;且未發現次級轉變峰,可以認為樹脂固化基本完全,同時考慮到生產效率和能耗成本的問題,未采用160℃的后固化處理過程。
      4 ·結語
      (1)LY564樹脂體系玻璃化轉變溫度為123.4℃ ,滿足使用環境對樹脂體 暴的要求;
      (2)LY564樹脂體系理論固化工藝為:88.4℃恒溫一段時間,然后升溫到126.7℃ 恒溫固化,最后163.6℃恒溫一段時間使樹脂充分固化;
      (3)LY564樹脂體系的凝膠溫度為90℃。
 
 
[ 復材學院搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規舉報 ]  [ 關閉窗口 ]

 

 
?
推薦圖文
推薦復材學院
點擊排行
(c)2013-2020 復合材料應用技術網 All Rights Reserved

  魯ICP備2021047099號

關注復合材料應用技術網微信
主站蜘蛛池模板: 古蔺县| 祁东县| 铜陵市| 克拉玛依市| 正安县| 锦屏县| 鹰潭市| 郁南县| 大庆市| 东源县| 延吉市| 宜兰市| 乌兰浩特市| 罗源县| 株洲县| 汉川市| 佛冈县| 黎川县| 民乐县| 罗山县| 邓州市| 读书| 东城区| 颍上县| 沁水县| 松潘县| 获嘉县| 修水县| 和田县| 南雄市| 兰考县| 江油市| 湟中县| 筠连县| 七台河市| 阳谷县| 浦江县| 长海县| 广南县| 金华市| 邵东县|